

Heidelberg Materials, Ribblesdale Air Quality Stations November 2024 Data Summary 12 Dec 2024





## **Quality Management**

| Job No       | EMT10022                                                                                                    |                                                        |       |  |
|--------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------|--|
| Project      | Heidelberg Materials, Ribblesdale                                                                           | Heidelberg Materials, Ribblesdale Air Quality Stations |       |  |
| Location     | Newcastle Office                                                                                            | Newcastle Office                                       |       |  |
| Title        | Ribblesdale AQS Data Summary -                                                                              | Ribblesdale AQS Data Summary – November 2024           |       |  |
| Prepared for | Heidelberg Materials UK                                                                                     |                                                        |       |  |
| Document Ref | EMT10022_November<br>2024_Rev0                                                                              | Issue / Revision                                       | 001   |  |
| Date         | 12 Dec 2024                                                                                                 |                                                        |       |  |
| Prepared by  | Prepared by     Stephen Wigham     Signature (for file)       Principal Consultant     Signature (for file) |                                                        | Su    |  |
| Checked by   | Jeff Hood<br>Senior Consultant                                                                              | Signature (for file)                                   | Ostal |  |

## **Revision Status / History**

| Rev  | Date     | Issue / Purpose/ Comment | Prepared | Authorised |
|------|----------|--------------------------|----------|------------|
| Rev0 | 12/12/24 | First issue              | SW       | JH         |
|      |          |                          |          |            |
|      |          |                          |          |            |
|      |          |                          |          |            |
|      |          |                          |          |            |



### Contents

|         | 1. Introducti<br>1.1 Site descrip                                     |                              | 2<br>2       |
|---------|-----------------------------------------------------------------------|------------------------------|--------------|
|         | 2. Standard                                                           | s and Guidance               | 3            |
|         | <ol> <li>Data Sum</li> <li>Chatburn A</li> <li>Clitheroe A</li> </ol> | QS-1                         | 6<br>6<br>14 |
| Figures | Figure 1                                                              | Chatburn Air Quality Station | 2            |

## **Tables**

| Table 1 | UK Air Quality 0 | Objectives f | or protection | of human | health, Ju | lly |
|---------|------------------|--------------|---------------|----------|------------|-----|
|         | 2007             |              |               |          |            | 3   |



# 1. Introduction

Element Materials Technology were commissioned by Heidelberg Materials UK, Ribblesdale to maintain the Air Quality Stations (AQS) located in Chatburn and Clitheroe. Both AQS use the Turnkey Instruments' Osiris and iGas analysers to provide real-time particulate, gas concentrations and meteorological data, at the AQS sites identified in **Figure 1**. The AQS is permanently connected to the AirQWeb system and provides an online portal to view current and historical data, and 24/7 alarm trigger function to alert any exceedence of the relevant air quality standards.

The November 2024 air quality data summary from the Chatburn and Clitheroe AQS are summarised below.

### 1.1 Site description

The Chatburn AQS (AQS-1) is situated within Chatburn village on Ribblesdale View. The monitoring location is situated northeast of the Heidelberg Materials, Ribblesdale cement site and quarry.

The Clitheroe AQS (AQS-2) is situated on Butts Grove, in Clitheroe. The monitoring location is situated southwest of the Heidelberg Materials, Ribblesdale cement site and quarry.



Figure 1 Chatburn Air Quality Station



# 2. Standards and Guidance

The objectives adopted in England for the purpose of Local Air Quality Management are set out in The Air Quality Strategy for England, Scotland, Wales & Northern Ireland (DEFRA, 2000), as amended 2003. Similar targets are set at EU level, where there are called limit or target values. These are set out in the European 2008 Ambient Air Quality Directive (2008/50/EC).

A summary of the current UK Air Quality Objectives is provided in Table 1.

|                                  | ity objectives for protection | on or naman nearth, oary             | 2007                   |  |  |
|----------------------------------|-------------------------------|--------------------------------------|------------------------|--|--|
|                                  | Air Quality Objective         | To be                                |                        |  |  |
| Pollutant                        | Concentration Measured as     |                                      | achieved by            |  |  |
| Benzene                          |                               |                                      |                        |  |  |
| All authorities                  | 16.25 μg m <sup>-3</sup>      | Running annual mean                  | 31<br>December<br>2003 |  |  |
| England and Wales Only           | 5.00 µg m <sup>-3</sup>       | Annual mean                          | 31<br>December<br>2010 |  |  |
| Scotland and N. Ireland          | 3.25 µg m <sup>-3</sup>       | Running annual mean                  | 31<br>December<br>2010 |  |  |
| 1,3-Butadiene                    |                               |                                      |                        |  |  |
| All authorities                  | 2.25 µg m <sup>-3</sup>       | Running annual mean                  | 31<br>December<br>2003 |  |  |
| Carbon Monoxide                  |                               |                                      |                        |  |  |
| England, Wales and N.<br>Ireland | 10.0 mg m <sup>-3</sup>       | Maximum daily running<br>8-hour mean | 31<br>December<br>2003 |  |  |
| Scotland Only                    | 10.0 mg m <sup>-3</sup>       | Running 8-hour mean                  | 31<br>December<br>2003 |  |  |
| Lead                             |                               |                                      |                        |  |  |
|                                  | 0.5 μg m <sup>-3</sup>        | Annual mean                          | 31<br>December<br>2004 |  |  |
| All authorities                  | 0.25 µg m <sup>-3</sup>       | Annual mean                          | 31<br>December<br>2008 |  |  |
| Nitrogen Dioxide                 | Nitrogen Dioxide              |                                      |                        |  |  |

 Table 1
 UK Air Quality Objectives for protection of human health, July 2007



|                                                | Air Quality Objective                                                                                           | To be                |                        |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|------------------------|--|
| Pollutant                                      | Concentration                                                                                                   | Measured as          | achieved by            |  |
| All authorities                                | 200 μg m <sup>-3</sup> not to be<br>exceeded more than 18<br>times a year (99.79 <sup>th</sup><br>percentile)   | 1-hour mean          | 31<br>December<br>2005 |  |
|                                                | 40 µg m <sup>-3</sup>                                                                                           | Annual mean          | 31<br>December<br>2005 |  |
| Particles (PM10) (gravimetric                  | c)                                                                                                              |                      |                        |  |
| All authorities                                | 50 μg m <sup>-3</sup> , not to be<br>exceeded more than 35<br>times a year (90.41 <sup>th</sup><br>percentile)  | 24 hour running mean | 31<br>December<br>2004 |  |
|                                                | 40 µg m <sup>-3</sup>                                                                                           | Annual mean          | 31<br>December<br>2004 |  |
| Scotland Only                                  | 50 μg m <sup>-3</sup> , not to be<br>exceeded more than 7<br>times a year (98.08 <sup>th</sup><br>percentile)   | 24 hour running mean | 31<br>December<br>2010 |  |
|                                                | 18 μg m <sup>-3</sup>                                                                                           | Annual mean          | 31<br>December<br>2010 |  |
| Particles (PM <sub>2.5</sub> ) (gravimetric) * |                                                                                                                 |                      |                        |  |
|                                                | 25 µg m <sup>-3</sup> (target)                                                                                  | Annual mean          | 2020                   |  |
| All authorities                                | 15% cut in urban<br>background exposure                                                                         | Annual mean          | 2010 - 2020            |  |
| Scotland Only                                  | 12 µg m <sup>-3</sup> (limit)                                                                                   | Annual mean          | 2010                   |  |
| Sulphur dioxide                                |                                                                                                                 |                      |                        |  |
|                                                | 350 μg m <sup>-3</sup> , not to be<br>exceeded more than 24<br>times a year (99.73 <sup>th</sup><br>percentile) | 1-hour mean          | 31<br>December<br>2004 |  |
| All authorities                                | 125 μg m <sup>-3</sup> , not to be<br>exceeded more than 3<br>times a year (99.18 <sup>th</sup><br>percentile)  | 24-hour mean         | 31<br>December<br>2004 |  |
|                                                | 266 μg m <sup>-3</sup> , not to be<br>exceeded more than 35<br>times a year (99.90 <sup>th</sup><br>percentile) | 15-minute mean       | 31<br>December<br>2005 |  |
| PAH *                                          |                                                                                                                 |                      |                        |  |



|                                                                | Air Quality Objective                                                     | To be                                          |                        |  |
|----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|------------------------|--|
| Pollutant                                                      | Concentration                                                             | Measured as                                    | achieved by            |  |
| All authorities                                                | 0.25 ng m <sup>-3</sup>                                                   | Annual mean                                    | 31<br>December<br>2010 |  |
| Ozone *                                                        |                                                                           |                                                |                        |  |
| All authorities                                                | 100 μg m <sup>-3</sup> not to be<br>exceeded more than 10<br>times a year | 8 hourly running or hourly mean*               | 31<br>December<br>2005 |  |
| *Not included in regulations at pre                            | esent                                                                     |                                                |                        |  |
|                                                                | Air Quality Objective                                                     |                                                | To be                  |  |
| Pollutant                                                      | Concentration                                                             | Measured as                                    | achieved by            |  |
| Nitrogen dioxide (for protection of vegetation & ecosystems) * |                                                                           |                                                |                        |  |
| All ecosystems                                                 | 30 µg m <sup>-3</sup>                                                     | Annual mean                                    | 31<br>December<br>2000 |  |
| Sulphur dioxide (for protection                                | on of vegetation & ecosystems)                                            | *                                              |                        |  |
|                                                                | 20 µg m <sup>-3</sup>                                                     | Annual mean                                    | 31                     |  |
| All ecosystems                                                 | 20 µg m <sup>-3</sup>                                                     | Winter Average (Oct -<br>Mar)                  | December<br>2000       |  |
| Ozone *                                                        |                                                                           |                                                |                        |  |
|                                                                |                                                                           | AOT40⁺, calculated from<br>1h values May-July. | 01 January             |  |

\*not included in regulations at present

<sup>+</sup>AOT 40 is the sum of the differences between hourly concentrations greater than 80  $\mu$ g m<sup>-3</sup> (=40ppb) and 80  $\mu$ g m<sup>-3</sup>, over a given period using only the 1-hour averages measured between 08:00 and 20:00 hours.

Mean of 5 years, starting

2010

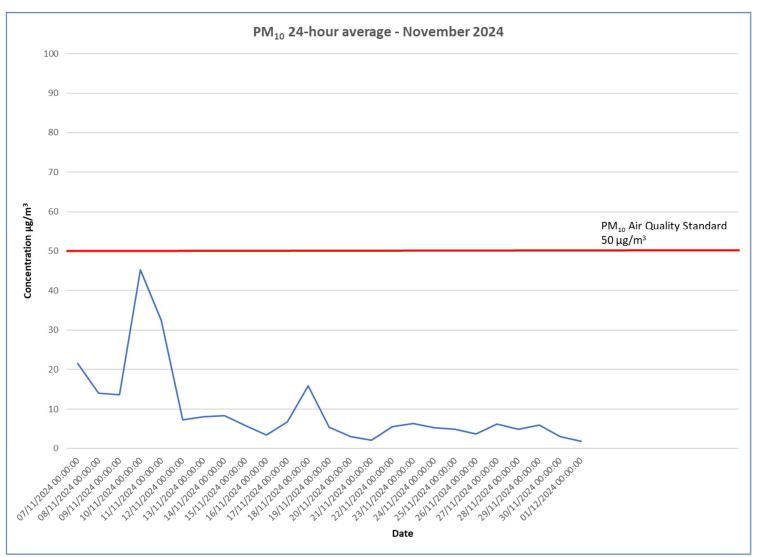
2010



## 3. Data Summary

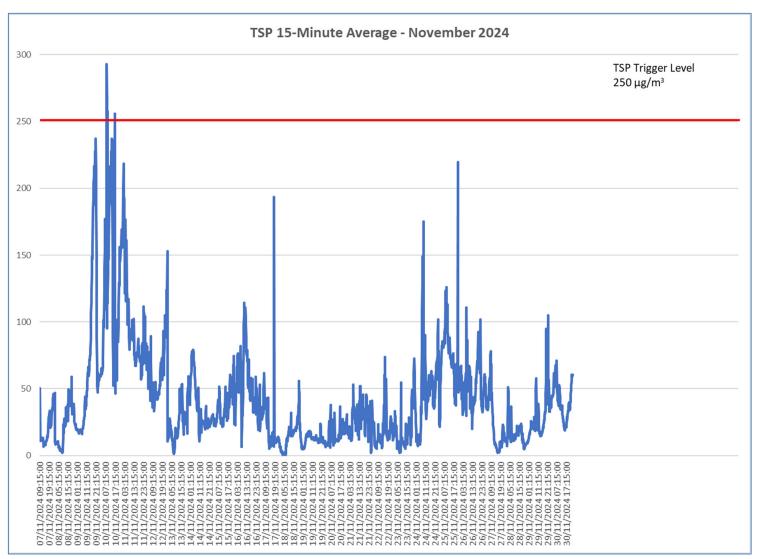
- 3.1 Chatburn AQS-1
- 3.1.1 Osiris particulate data

Based upon the current UK air quality guidance, the following relevant alarm trigger levels are active on the Osiris analyser and data are presented below:


- PM<sub>10</sub> 50 µg/m<sup>3</sup> over a 24-hour period; and
- TSP 250 µg/m<sup>3</sup> over a 15-minute period.
- 3.1.1.1 November 2024 data summary

A pump flow fault resulted in some data being lost during the early part of November.

A few exceedances of the TSP 15-minute trigger level concentration occurred on the 10/11/24. Heidelberg have confirmed that no operational problems on site were reported over this period. It can be assumed that these exceedances were not a result of Heidelberg site operations but rather locally generated dust from residential activities in close proximity to the analyser.




Confidential 3/ Data Summary

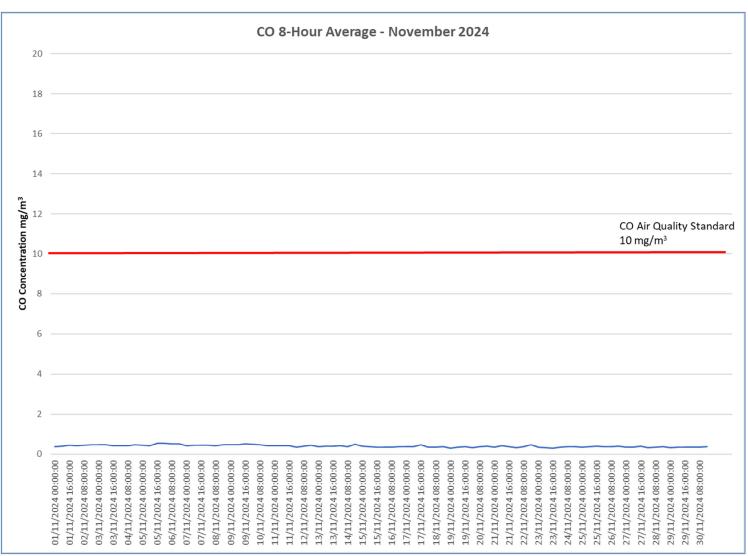


7

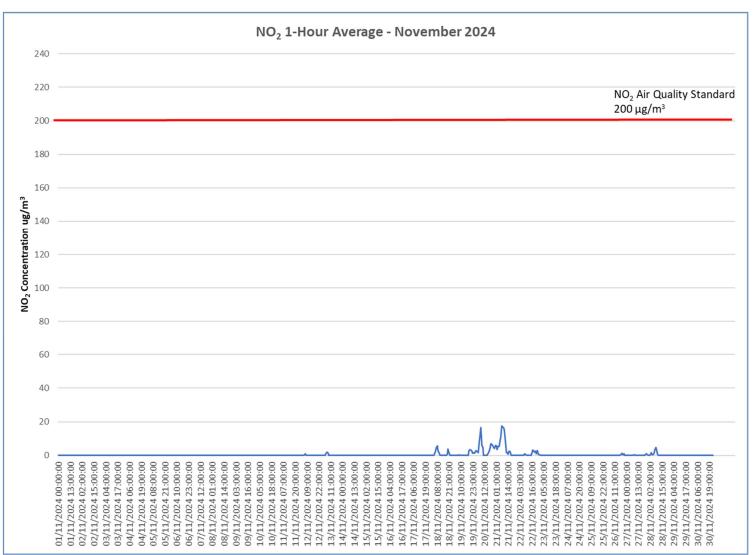




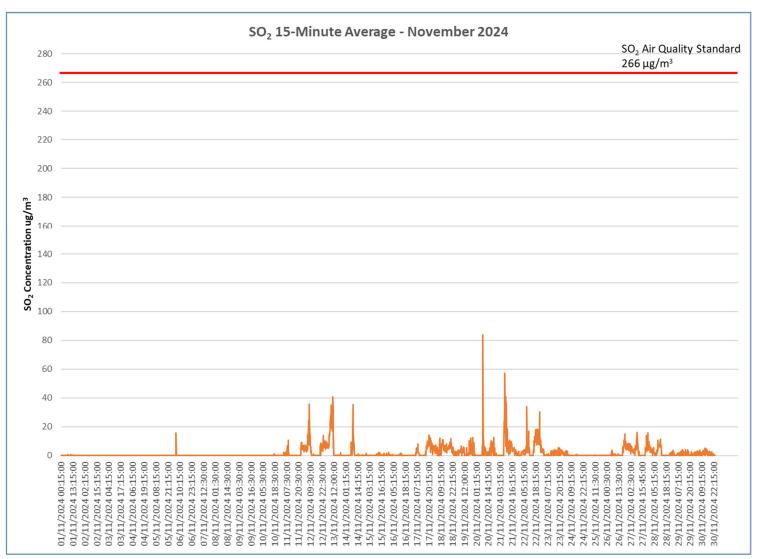



#### 3.1.2 iGas data

Based upon the current UK air quality guidance, the following relevant alarm trigger levels are active on the iGas analyser and data are presented below:


- CO 10 mg/m<sup>3</sup> over an 8-hour period;
- NO<sub>2</sub> 200  $\mu$ g/m<sup>3</sup> over a 1-hour period; and
- SO<sub>2</sub> 266  $\mu/m^3$  over a 15-minute period.
- 3.1.2.1 November 2024 data summary

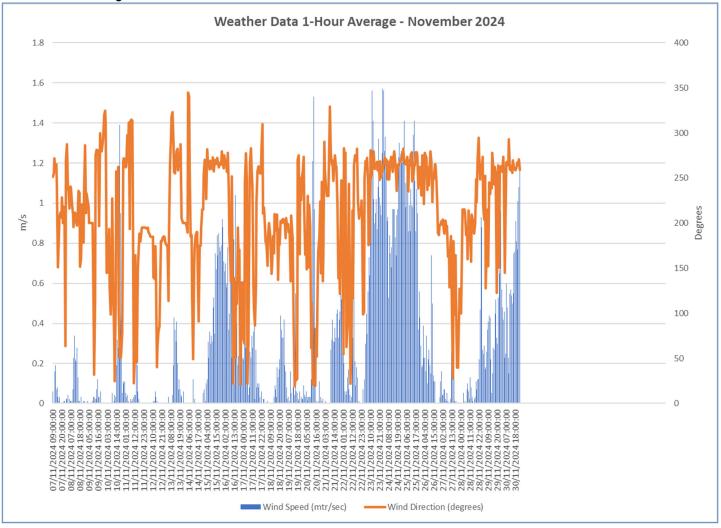
There were no exceedences of the gas air quality standards.














Confidential 3/ Data Summary

#### 3.1.3 Meteorological data

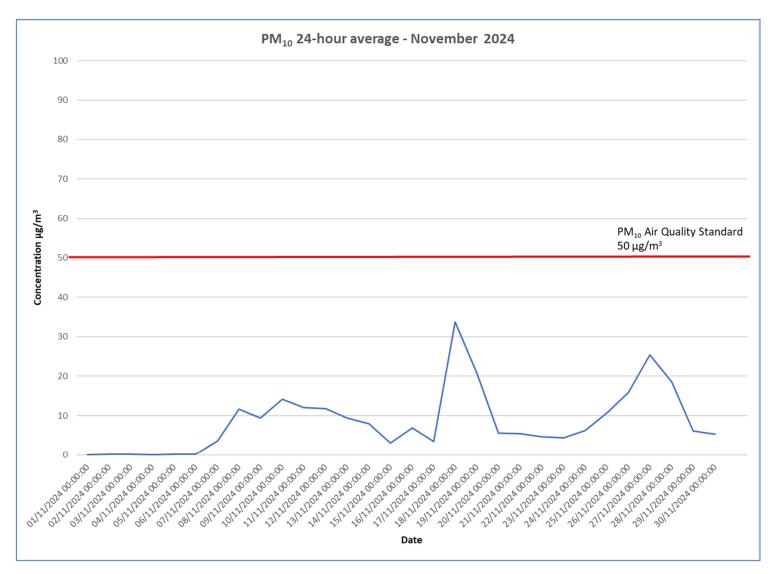




### 3.2 Clitheroe AQS-2

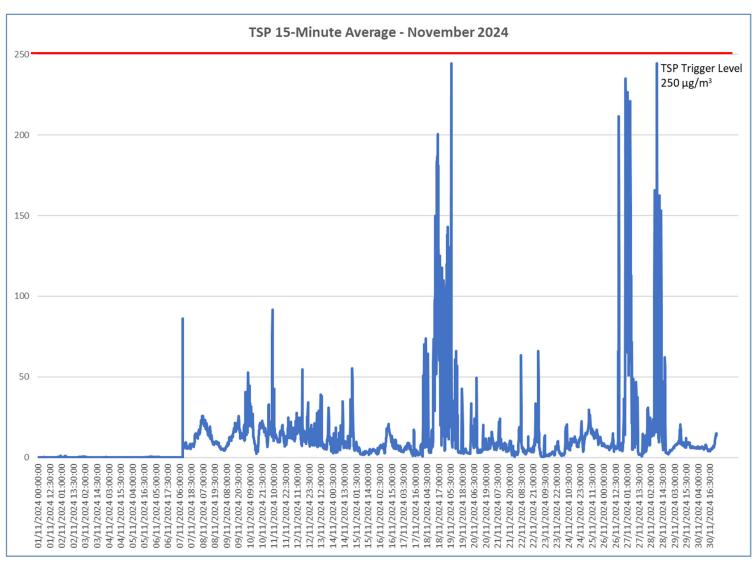
#### 3.2.1 Osiris particulate data

Based upon the current UK air quality guidance, the following relevant alarm trigger levels are active on the Osiris analyser and data are presented below:


- $PM_{10}$  50 µg/m<sup>3</sup> over a 24-hour period; and
- TSP 250 µg/m<sup>3</sup> over a 15-minute period.

#### 3.2.1.1 November 2024 data summary

There were no exceedences of the particulate air quality standards.




Confidential 3/ Data Summary



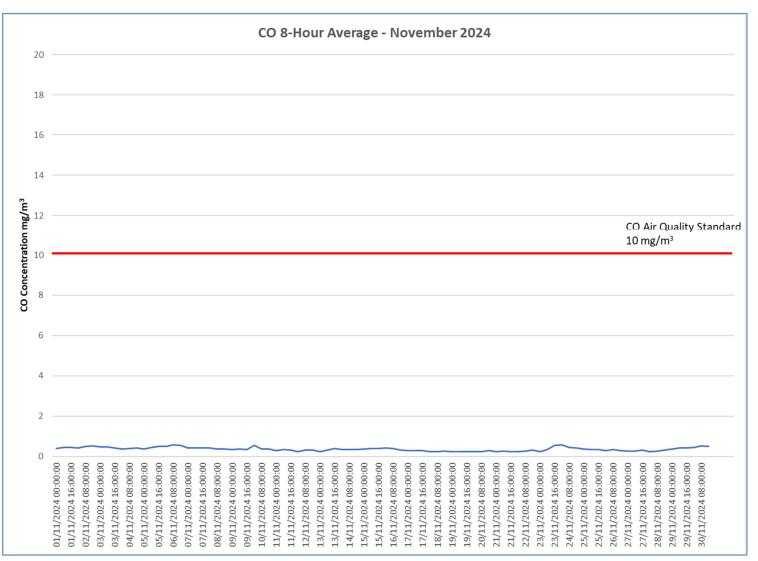
15







#### 3.2.2 iGas data


Based upon the current UK air quality guidance, the following relevant alarm trigger levels are active on the iGas analyser and data are presented below:

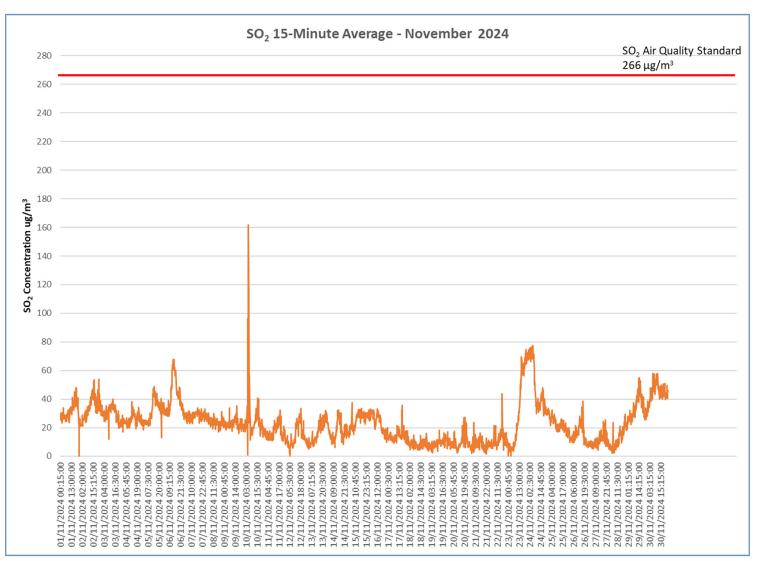
- CO 10 mg/m<sup>3</sup> over an 8-hour period;
- NO<sub>2</sub> 200  $\mu$ g/m<sup>3</sup> over a 1-hour period; and
- SO<sub>2</sub> 266  $\mu/m^3$  over a 15-minute period.
- 3.2.2.1 November 2024 data summary

There were no exceedences of the gas air quality standards.

elemenť

Heidelberg Materials, Ribblesdale November 2024 AQS Data Summary 12 Dec 2024

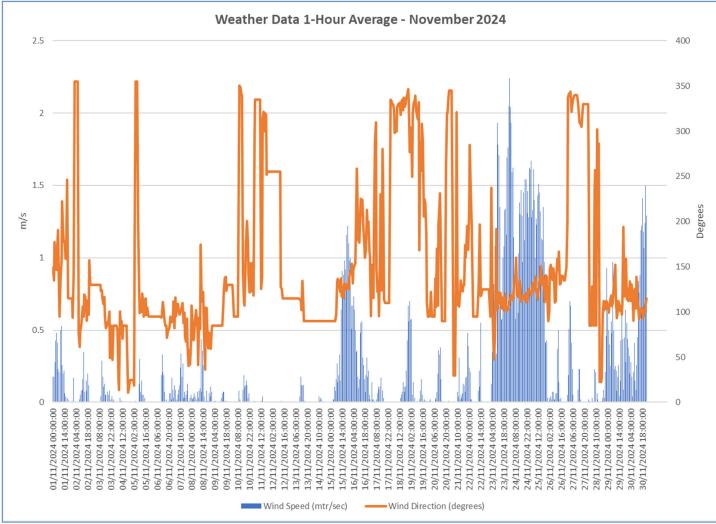



element

Heidelberg Materials, Ribblesdale November 2024 AQS Data Summary 12 Dec 2024

|                                                 |    | NO <sub>2</sub> 1-Hour Average - November 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                               | 40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2                                               | 20 | NO <sub>2</sub> Air Quality Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2                                               | 00 | 200 μg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                                               | 80 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 | 60 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NO <sub>2</sub> Concentration ug/m <sup>3</sup> | 40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ntratio                                         | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <sup>2</sup> Conce                              | 00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 | 80 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 | 60 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 | 40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 | 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 | -  | 01/11/2024 00:00:00<br>02/11/2024 13:00:00<br>03/11/2024 13:00:00<br>03/11/2024 15:00:00<br>03/11/2024 15:00:00<br>05/11/2024 15:00:00<br>06/11/2024 15:00:00<br>06/11/2024 15:00:00<br>06/11/2024 15:00:00<br>06/11/2024 15:00:00<br>10/11/2024 15:00:00<br>11/11/2024 15:00:00<br>12/11/2024 15:00:00<br>12/11/2024 15:00:00<br>12/11/2024 15:00:00<br>12/11/2024 15:00:00<br>12/11/2024 15:00:00<br>12/11/2024 15:00:00<br>22/11/2024 15:00:00<br>23/11/2024 15:00:00<br>23/11/ |

elemenť


Heidelberg Materials, Ribblesdale November 2024 AQS Data Summary 12 Dec 2024





Confidential 3/ Data Summary

#### 3.2.3 Meteorological data





**Element Materials Technology** Shields Road Newcastle-upon-Tyne NE6 2YD