

Heidelberg Materials, Ribblesdale Air Quality Stations October 2024 Data Summary 14 Nov 2024

Quality Management

Job No	EMT10022					
Project	Heidelberg Materials, Ribblesdale	Air Quality Stations				
Location	Newcastle Office					
Title	Ribblesdale AQS Data Summary -	– October 2024				
Prepared for	Heidelberg Materials UK					
Document Ref	EMT10022_October 2024_Rev0	EMT10022_October 2024_Rev0 Issue / Revision 001				
Date	14 Nov 2024					
Prepared by	Stephen Wigham Signature (for file)					
Checked by	Jeff Hood Senior Consultant	Signature (for file)	Ostal			

Revision Status / History

Rev	Date	Issue / Purpose/ Comment	Prepared	Authorised
Rev0	14/11/24	First issue	SW	JH

Contents

	1. Introducti 1.1 Site descrip		2 2
	2. Standard	s and Guidance	3
	 Data Sum Chatburn A Clitheroe A 	QS-1	6 6 14
Figures	Figure 1	Chatburn Air Quality Station	2

Tables

Table 1	UK Air Quality	Objectives	for	protection	of human	health,	July
	2007						3

1. Introduction

Element Materials Technology were commissioned by Heidelberg Materials UK, Ribblesdale to maintain the Air Quality Stations (AQS) located in Chatburn and Clitheroe. Both AQS use the Turnkey Instruments' Osiris and iGas analysers to provide real-time particulate, gas concentrations and meteorological data, at the AQS sites identified in **Figure 1**. The AQS is permanently connected to the AirQWeb system and provides an online portal to view current and historical data, and 24/7 alarm trigger function to alert any exceedence of the relevant air quality standards.

The October 2024 air quality data summary from the Chatburn and Clitheroe AQS are summarised below.

1.1 Site description

The Chatburn AQS (AQS-1) is situated within Chatburn village on Ribblesdale View. The monitoring location is situated northeast of the Heidelberg Materials, Ribblesdale cement site and quarry.

The Clitheroe AQS (AQS-2) is situated on Butts Grove, in Clitheroe. The monitoring location is situated southwest of the Heidelberg Materials, Ribblesdale cement site and quarry.

Figure 1 Chatburn Air Quality Station

2. Standards and Guidance

The objectives adopted in England for the purpose of Local Air Quality Management are set out in The Air Quality Strategy for England, Scotland, Wales & Northern Ireland (DEFRA, 2000), as amended 2003. Similar targets are set at EU level, where there are called limit or target values. These are set out in the European 2008 Ambient Air Quality Directive (2008/50/EC).

A summary of the current UK Air Quality Objectives is provided in Table 1.

	ity objectives for protection	on or naman nearth, oary	2007
	Air Quality Objective	To be	
Pollutant	Concentration	Measured as	achieved by
Benzene			
All authorities	16.25 μg m ⁻³	Running annual mean	31 December 2003
England and Wales Only	5.00 µg m ⁻³	Annual mean	31 December 2010
Scotland and N. Ireland	3.25 µg m ⁻³	Running annual mean	31 December 2010
1,3-Butadiene			
All authorities	2.25 µg m ⁻³	Running annual mean	31 December 2003
Carbon Monoxide			
England, Wales and N. Ireland	10.0 mg m ⁻³	Maximum daily running 8-hour mean	31 December 2003
Scotland Only	10.0 mg m ⁻³	Running 8-hour mean	31 December 2003
Lead			
	0.5 μg m ⁻³	Annual mean	31 December 2004
All authorities	0.25 µg m ⁻³	Annual mean	31 December 2008
Nitrogen Dioxide			

Table 1 UK Air Quality Objectives for protection of human health, July 2007

	Air Quality Objective		To be	
Pollutant	Concentration	Measured as	achieved by	
All authorities	200 μg m ⁻³ not to be exceeded more than 18 times a year (99.79 th percentile)	1-hour mean	31 December 2005	
	40 µg m ⁻³	Annual mean	31 December 2005	
Particles (PM10) (gravimetric	2)			
All authorities	50 μg m ⁻³ , not to be exceeded more than 35 times a year (90.41 th percentile)	24 hour running mean	31 December 2004	
	40 µg m ⁻³	Annual mean	31 December 2004	
Scotland Only	50 μg m ⁻³ , not to be exceeded more than 7 times a year (98.08 th percentile)	24 hour running mean	31 December 2010	
	18 μg m ⁻³	Annual mean	31 December 2010	
Particles (PM _{2.5}) (gravimetric) *				
	25 µg m ⁻³ (target)	Annual mean	2020	
All authorities	15% cut in urban background exposure	Annual mean	2010 - 2020	
Scotland Only	12 µg m ⁻³ (limit)	Annual mean	2010	
Sulphur dioxide				
	350 μg m ⁻³ , not to be exceeded more than 24 times a year (99.73 th percentile)	1-hour mean	31 December 2004	
All authorities	125 μg m ⁻³ , not to be exceeded more than 3 times a year (99.18 th percentile)	24-hour mean	31 December 2004	
	266 μg m ⁻³ , not to be exceeded more than 35 times a year (99.90 th percentile)	15-minute mean	31 December 2005	
PAH *				

	Air Quality Objective		To be			
Pollutant	Concentration	Measured as	achieved by			
All authorities	0.25 ng m ⁻³	Annual mean	31 December 2010			
Ozone *						
All authorities	100 μg m ⁻³ not to be exceeded more than 10 times a year	8 hourly running or hourly mean*	31 December 2005			
*Not included in regulations at pre	esent					
	Air Quality Objective		To be			
Pollutant	Concentration	Measured as	achieved by			
Nitrogen dioxide (for protecti	ion of vegetation & ecosystems))*				
All ecosystems	30 µg m ⁻³	Annual mean	31 December 2000			
Sulphur dioxide (for protection	Sulphur dioxide (for protection of vegetation & ecosystems) *					
	20 µg m ⁻³	Annual mean	31			
All ecosystems	20 µg m ⁻³	Winter Average (Oct - Mar)	December 2000			
Ozone *						
All ecosystems	18 μg m ⁻³	AOT40⁺, calculated from 1h values May-July. Mean of 5 years, starting	01 January 2010			

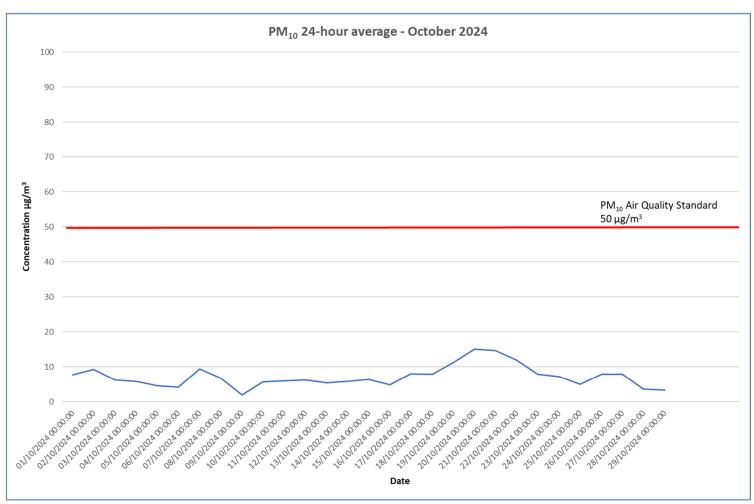
*not included in regulations at present

⁺AOT 40 is the sum of the differences between hourly concentrations greater than 80 μ g m⁻³ (=40ppb) and 80 μ g m⁻³, over a given period using only the 1-hour averages measured between 08:00 and 20:00 hours.

2010

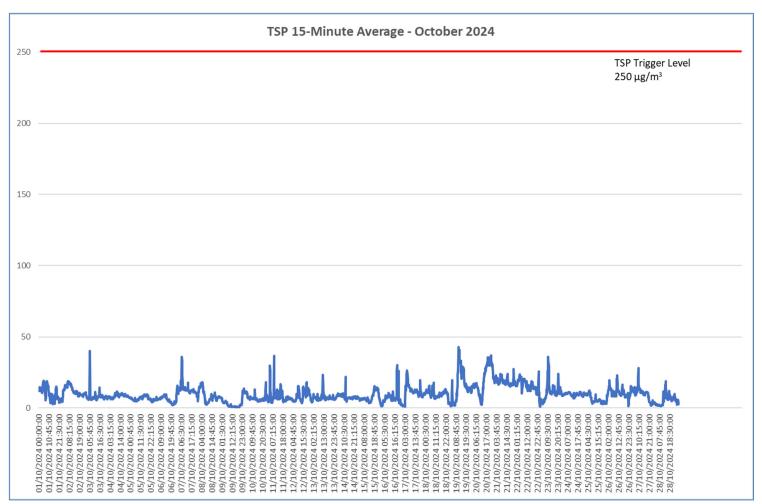
3. Data Summary

- 3.1 Chatburn AQS-1
- 3.1.1 Osiris particulate data


Based upon the current UK air quality guidance, the following relevant alarm trigger levels are active on the Osiris analyser and data are presented below:

- PM₁₀ 50 µg/m³ over a 24-hour period; and
- TSP 250 μ g/m³ over a 15-minute period.
- 3.1.1.1 October 2024 data summary

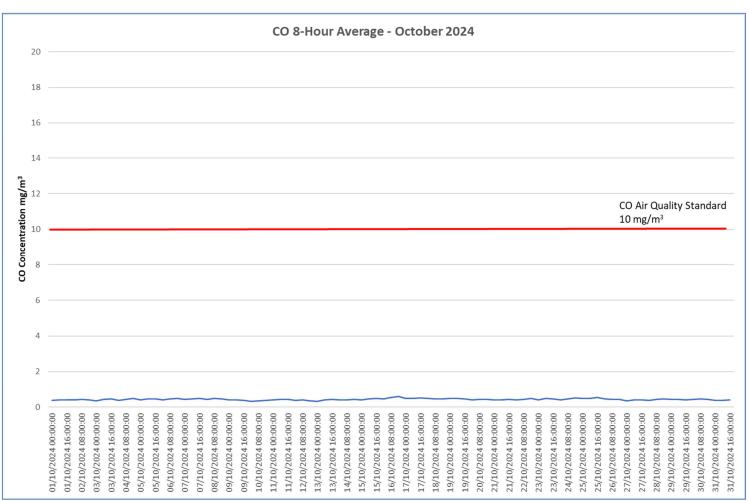
There were no exceedences of the particulate air quality standards.


Confidential 3/ Data Summary

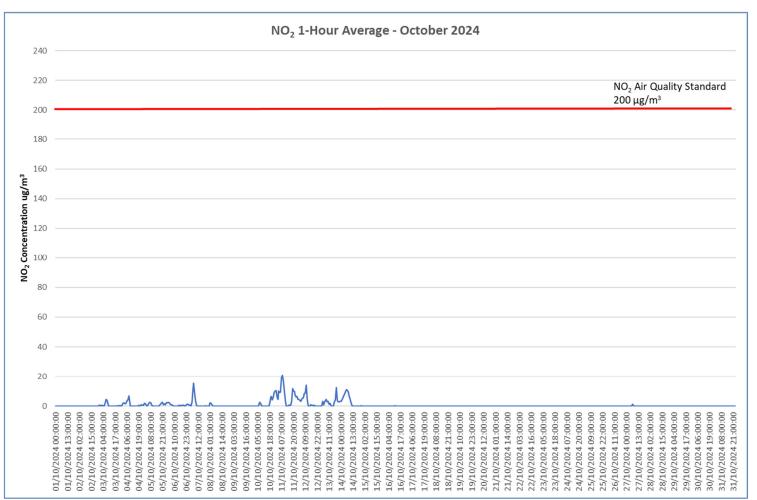
7

elemenť

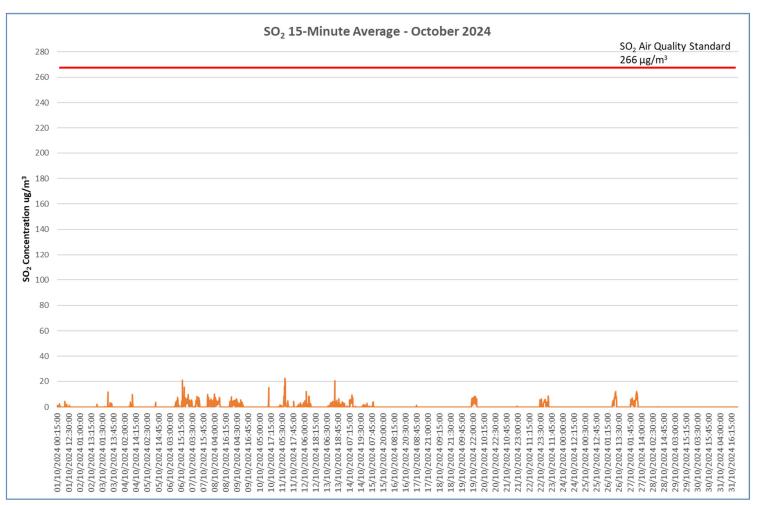
Heidelberg Materials, Ribblesdale October 2024 AQS Data Summary 14 Nov 2024

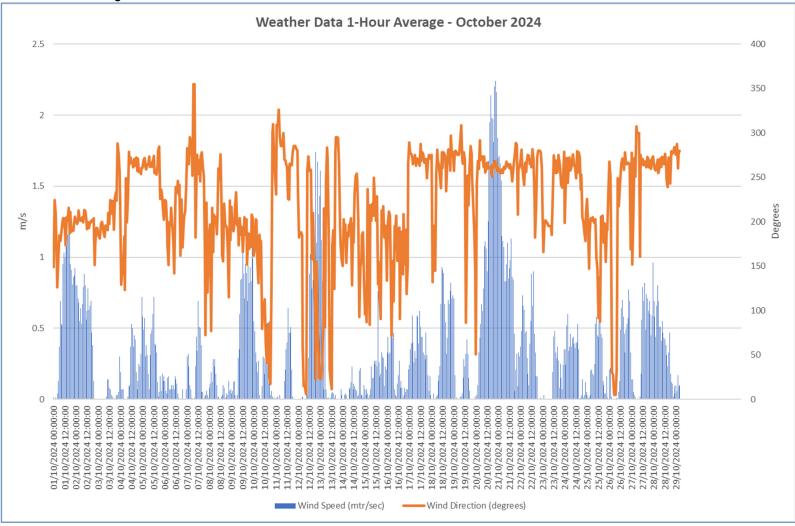

3.1.2 iGas data

Based upon the current UK air quality guidance, the following relevant alarm trigger levels are active on the iGas analyser and data are presented below:


- CO 10 mg/m³ over an 8-hour period;
- NO₂ 200 μ g/m³ over a 1-hour period; and
- SO₂ 266 μ/m^3 over a 15-minute period.
- 3.1.2.1 October 2024 data summary

There were no exceedences of the gas air quality standards.



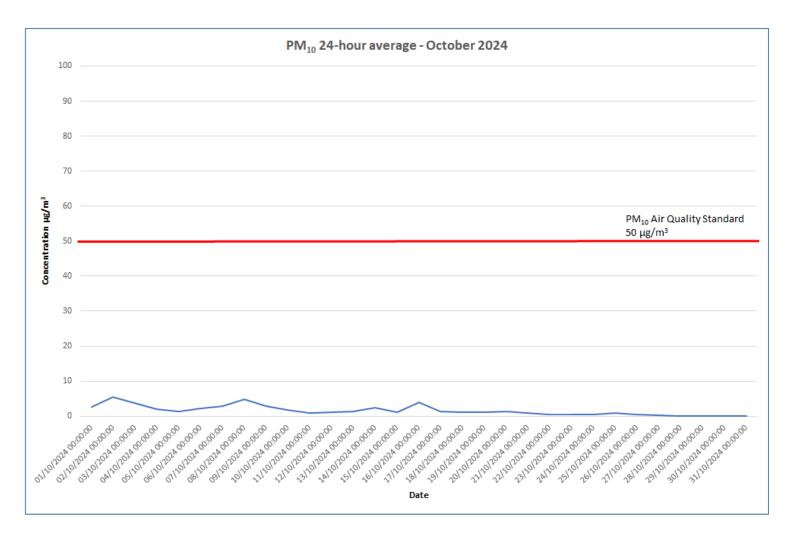


Confidential 3/ Data Summary

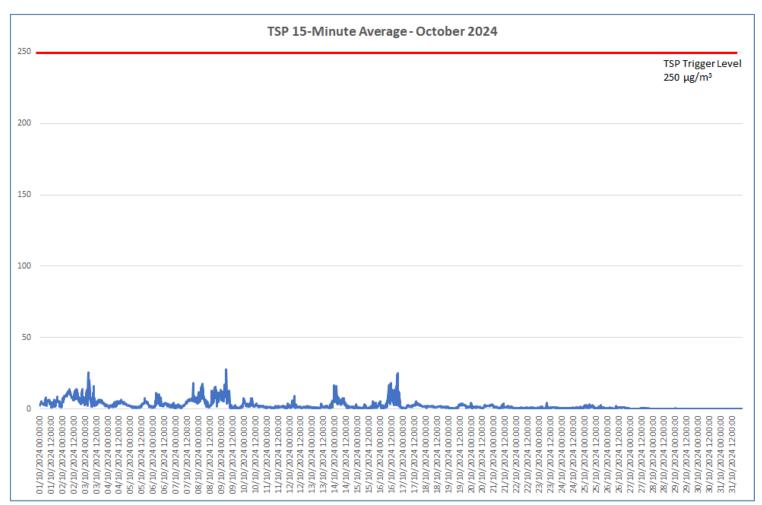
3.1.3 Meteorological data

3.2 Clitheroe AQS-2

3.2.1 Osiris particulate data


Based upon the current UK air quality guidance, the following relevant alarm trigger levels are active on the Osiris analyser and data are presented below:

- PM_{10} 50 µg/m³ over a 24-hour period; and
- TSP 250 µg/m³ over a 15-minute period.


3.2.1.1 October 2024 data summary

There were no exceedences of the particulate air quality standards.

3.2.2 iGas data

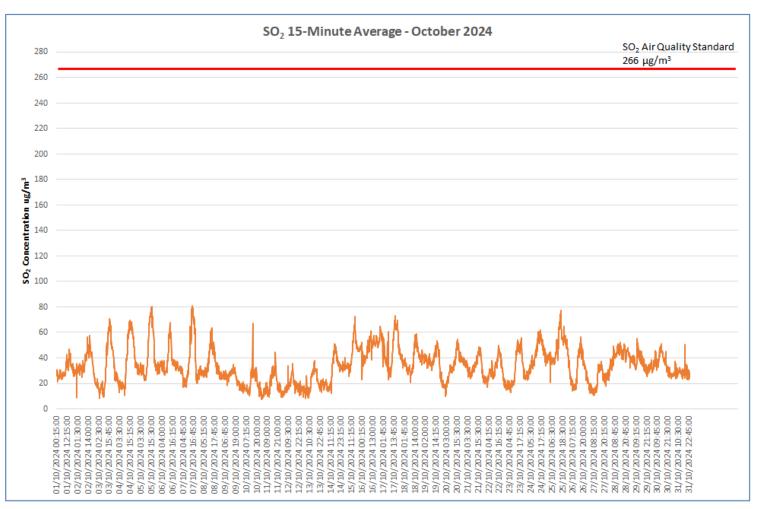
Based upon the current UK air quality guidance, the following relevant alarm trigger levels are active on the iGas analyser and data are presented below:

- CO 10 mg/m³ over an 8-hour period;
- NO₂ 200 μ g/m³ over a 1-hour period; and
- SO₂ 266 μ/m^3 over a 15-minute period.
- 3.2.2.1 October 2024 data summary

There were no exceedences of the gas air quality standards.

elemenť

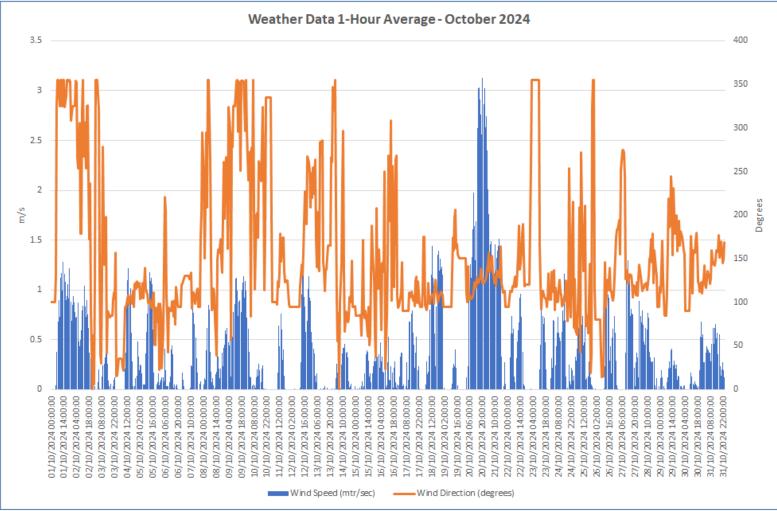
Heidelberg Materials, Ribblesdale October 2024 AQS Data Summary 14 Nov 2024


01/10/2024 00:00:00	8	12 —	14 —	16 —	18 —	20 —
~						
		ir Q g/m				
		ty S				
		tan				
31/10/2024 00:00:00		da				
		3				

elemenť

Heidelberg Materials, Ribblesdale October 2024 AQS Data Summary 14 Nov 2024

	NO ₂ 1-Hour Average - October 2024
240	
220	NO ₂ Air Quality Standard
200	200 µg/m³
180	
160	
140 120 100	·
120	
100	
80	
60	
40	
20	
0	01/10/2024 00:0000 02/10/2024 15:00:00 03/10/2024 15:00:00 03/10/2024 15:00:00 03/10/2024 15:00:00 03/10/2024 15:00:00 03/10/2024 15:00:00 03/10/2024 15:00:00 03/10/2024 15:00:00 03/10/2024 15:00:00 11/10/2024 15:00:00 03/10/2024 15:00:00 11/10/2024 15:00:00 23/10/2024 15:00:00 22/10/2024 15:00000 22/10/2024 15:00000 22/10/2024 15:00000 22/10/2024 15:00000 22/10/2024 15:00000 22/10/2024 15:000000 22/10/2024 15:000000 22/10/2024 15:000000 22/1



Confidential 3/ Data Summary

3.2.3 Meteorological data

Element Materials Technology Shields Road Newcastle-upon-Tyne NE6 2YD